TUGAS BESAR - PANEN TANAMAN TOMAT
PANEN TANAMAN TOMAT
(SENSOR LOADCELL, TOUCH, INFRARED, PIR DAN HUMIDITY)
1. Tujuan[kembali]
- Mengetahui dan memahami prinsip kerja Touch Sensor, PIR, Loadcell, infrared dan humidity sensor.
- Mengetahui pengaplikasian rangkaian aritmatika dan counter menggunakan touch Sensor, PIR, Loadcell, infrared dan humidity sensor.
- Mengetahui prinsip kerja rangkaian aritmatika dan counter yang telah dihubungkan dengan berbagai sensor
2. Alat dan Bahan[kembali]
a. Alat
· Power Supply
· Battery
· DC Voltmeter
b. Bahan
· Resistor
Spesifikasi:
· Transistor
Spesifikasi:
· Relay
· Motor DC
Spesifikasi:
· Buzzer
· Sensor Touch
Datasheet dan Spesifikasi
· Sensor Humidity
Spesifikasi dan Datasheet:
· Adder (IC 7482)
· Seven Segment
- Sensor Loadcell
Sensor Infrared adalah komponen elektronika yang dapat mendeteksi benda ketika cahaya infra merah terhalangi oleh benda. Sensor infared terdiri dari led infrared sebagai pemancar sedangkan pada bagian penerima biasanya terdapat foto transistor, fotodioda, atau inframerah modul yang berfungsi untuk menerima sinar inframerah yang dikirimkan oleh pemancar.
Grafik respon:
Grafik menunjukkan hubungan antara resistansi dan jarak potensial untuk sensitivitas rentang antara pemancar dan penerima inframerah. Resistor yang digunakan pada sensor mempengaruhi intensitas cahaya inframerah keluar dari pemancar. Semakin tinggi resistansi yang digunakan, semakin pendek jarak IR Receiver yang mampu mendeteksi sinar IR yang dipancarkan dari IR Transmitter karena intensitas cahaya yang lebih rendah dari IR Transmitter. Sementara semakin rendah resistansi yang digunakan, semakin jauh jarak IR Receiver mampu mendeteksi sinar IR yang dipancarkan dari IR Transmitter karena intensitas cahaya yang lebih tinggi dari IR Transmitter.
3. Dasar Teori[kembali]
a. Resistor
Resistor atau hambatan adalah salah satu komponen elektronika yang memiliki nilai hambatan tertentu, dimana hambatan ini akan menghambat arus listrik yang mengalir melaluinya. Sebuah resistor biasanya terbuat dari bahan campuran Carbon. Namun tidak sedikit juga resistor yang terbuat dari kawat nikrom, sebuah kawat yang memiliki resistansi yang cukup tinggi dan tahan pada arus kuat. Contoh lain penggunaan kawat nikrom dapat dilihat pada elemen pemanas setrika. Jika elemen pemanas tersebut dibuka, maka terdapat seutas kawat spiral yang biasa disebut dengan kawat nikrom.
Satuan Resistor adalah Ohm (simbol: Ω) yang merupakan satuan SI untuk resistansi listrik. Dalam sejarah, kata ohm itu diambil dari nama salah seorang fisikawan hebat asal German bernama George Simon Ohm. Beliau juga yang mencetuskan keberadaan hukum ohm yang masih berlaku hingga sekarang.
Resistor berfungsi sebagai penghambat arus listrik. Jika ditinjau secara mikroskopik, unsur-unsur penyusun resistor memiliki sedikit sekali elektron bebas. Akibatnya pergerakan elektronya menjadi sangat lambat. Sehingga arus yang terukur pada multimeter akan menunjukan angka yang lebih rendah jika dibandingkan rangkaian listrik tanpa resistor.
Namun meskipun misalnya kita menyusun rangkaian listrik tanpa resistor, bukan berarti tidak ada hambatan listrik didalamnya. Karena setiap konduktor pasti memiliki nilai hambatan, meskipun relatif kecil. Namun dalam perhitungan matematis, biasanya kita abaikan nilai hambatan pada konduktor tersebut, dan kita anggap konduktor dalam kondisi ideal. Itu berarti besar resistansi konduktor adalah nol.
Simbol dari resistor merupakan sebagai berikut :
Cara Menghitung Nilai Resistor
Berdasarkan bentuknya dan proses pemasangannya pada PCB, Resistor terdiri 2 bentuk yaitu bentuk Komponen Axial/Radial dan Komponen Chip. Untuk bentuk Komponen Axial/Radial, nilai resistor diwakili oleh kode warna sehingga kita harus mengetahui cara membaca dan mengetahui nilai-nilai yang terkandung dalam warna tersebut sedangkan untuk komponen chip, nilainya diwakili oleh Kode tertentu sehingga lebih mudah dalam membacanya.
1) Berdasarkan Kode Warna
Seperti yang dikatakan sebelumnya, nilai Resistor yang berbentuk Axial adalah diwakili oleh Warna-warna yang terdapat di tubuh (body) Resistor itu sendiri dalam bentuk Gelang. Umumnya terdapat 4 Gelang di tubuh Resistor, tetapi ada juga yang 5 Gelang.
Gelang warna Emas dan Perak biasanya terletak agak jauh dari gelang warna lainnya sebagai tanda gelang terakhir. Gelang Terakhirnya ini juga merupakan nilai toleransi pada nilai Resistor yang bersangkutan.
Tabel dibawah ini adalah warna-warna yang terdapat di Tubuh Resistor:
- 4 Gelang Warna
Contoh :
Maka nilai Resistor tersebut adalah 10 * 105 = 1.000.000 Ohm atau 1 MOhm dengan toleransi 10%.
- 5 Gelang Warna
Contoh :
Maka nilai Resistor tersebut adalah 105 * 105 = 10.500.000 Ohm atau 10,5 MOhm dengan toleransi 10%.
Contoh-contoh perhitungan lainnya :
Merah, Merah, Merah, Emas → 22 * 10² = 2.200 Ohm atau 2,2 Kilo Ohm dengan 5% toleransi
Kuning, Ungu, Orange, Perak → 47 * 10³ = 47.000 Ohm atau 47 Kilo Ohm dengan 10% toleransi
Cara menghitung Toleransi :
2.200 Ohm dengan Toleransi 5% = 2200 – 5% = 2.090
2200 + 5% = 2.310
ini artinya nilai Resistor tersebut akan berkisar antara 2.090 Ohm ~ 2.310 Ohm
Untuk mempermudah menghafalkan warna di Resistor, kami memakai singkatan seperti berikut:
HI CO ME O KU JAU BI UNG A PU
(HItam, COklat, MErah, Orange, KUning. HiJAU, BIru, UNGu, Abu-abu, PUtih)
2) Berdasarkan Kode Angka
Membaca nilai Resistor yang berbentuk komponen Chip lebih mudah dari Komponen Axial, karena tidak menggunakan kode warna sebagai pengganti nilainya. Kode yang digunakan oleh Resistor yang berbentuk Komponen Chip menggunakan Kode Angka langsung jadi sangat mudah dibaca atau disebut dengan Body Code Resistor (Kode Tubuh Resistor)
Contoh :
Kode Angka yang tertulis di badan Komponen Chip Resistor adalah 4 7 3;
Contoh cara pembacaan dan cara menghitung nilai resistor berdasarkan kode angka adalah sebagai berikut :
Contoh-contoh perhitungan lainnya :
Resistor mempunyai nilai resistansi (tahanan) tertentu yang dapat memproduksi tegangan listrik di antara kedua pin dimana nilai tegangan terhadap resistansi tersebut berbanding lurus dengan arus yang mengalir, berdasarkan persamaan Hukum OHM :
Dimana V adalah tegangan, I adalah kuat arus, dan R adalah Hambatan
b. Transistor
Transistor merupakan alat semikonduktor yang dapat digunakan sebagai penguat sinyal, pemutus atau penyambung sinyal, stabilisasi tegangan, dan fungsi lainnya. Transistor memiliki 3 kaki elektroda, yaitu basis, kolektor, dan emitor. Pada rangkaian kali ini digunakan transistor 2SC1162 bertipe NPN. Transistor ini diperumpamakan sebagai saklar, yaitu ketika kaki basis diberi arus, maka arus pada kolektor akan mengalir ke emiter yang disebut dengan kondisi ON. Sedangkan ketika kaki basis tidak diberi arus, maka tidak ada arus mengalir dari kolektor ke emitor yang disebut dengan kondisi OFF. Namun, jika arus yang diberikan pada kaki basis melebihi arus pada kaki kolektor atau arus pada kaki kolektor adalah nol (karena tegangan kaki kolektor sekitar 0,2 - 0,3 V), maka transistor akan mengalami cutoff (saklar tertutup).
Transistor adalah sebuah komponen di dalam elektronika yang diciptakan dari bahan-bahan semikonduktor dan memiliki tiga buah kaki. Masing-masing kaki disebut sebagai basis, kolektor, dan emitor.
KarakteristikI/O:
c. Relay
Relay merupakan komponen elektronika berupa saklar atau swirch elektrik yang dioperasikan secara listrik dan terdiri dari 2 bagian utama yaitu Elektromagnet (coil) dan mekanikal (seperangkat kontak Saklar/Switch). Komponen elektronika ini menggunakan prinsip elektromagnetik untuk menggerakan saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi. Berikut adalah simbol dari komponen relay.
Pada dasarnya, Relay terdiri dari 4 komponen dasar yaitu :
Gambar bagian-bagian relay:
Kontak Poin (Contact Point) Relay terdiri dari 2 jenis yaitu :
- Normally Close (NC) yaitu kondisi awal sebelum diaktifkan akan selalu berada di posisi CLOSE (tertutup)
- Normally Open (NO) yaitu kondisi awal sebelum diaktifkan akan selalu berada di posisi OPEN (terbuka)
d. Buzzer
Buzzer listrik adalah sebuah komponen elektronika yang dapat mengubah sinyal listrik menjadi getaran suara.
Simbol:
Buzzer dapat bekerja dengan baik dalam menghasilkan frekuensi kisaran 1-5 KHz hingga 100 KHz untuk aplikasi ultrasound. Tegangan operasional buzzer yang umumnya berkisar 3-12 V.
Cara Kerja Buzzer
Tegangan Listrik yang mengalir ke buzzer akan menyebabkan gerakan mekanis, gerakan tersebut akan diubah menjadi suara atau bunyi yang dapat didengar oleh manusia.
e. Adder IC 7482
IC 7482, The NTE7482 is a 2−bit binary full adder in a 14−Lead DIP type melakukan penambahan dari dua bilangan biner 2 bit.
Konfigurasi
f. Seven Segment
Seven segment merupakan bagian-bagian yang digunakan untuk menampilkan angka atau bilangan decimal. Seven segment tersebut terbagi menjadi 7 batang LED yang disusun membentuk angka 8 dengan menggunakan huruf a-f yang disebut DOT MATRIKS. Setiap segment ini terdiri dari 1 atau 2 LED (Light Emitting Dioda). Seven segment bisa menunjukan angka-angka desimal serta beberapa bentuk tertentu melalui gabungan aktif atau tidaknya LED penyususnan dalam seven segment.
Supaya memudahkan penggunaannnya biasanya memakai sebuah sebuah seven segment driver yang akan mengatur aktif atau tidaknya led-led dalam seven segment sesuai dengan inputan biner yang diberikan. Bentuk tampilan modern disusun sebagai metode 7 bagian atau dot matriks. Jenis tersebut sama dengan namanya, menggunakan sistem tujuh batang led yang dilapis membentuk angka 8 seperti yang ditunjukkan pada gambar di atas. Huruf yang dilihatkan dalam gambar itu ditetapkan untuk menandai bagian-bagian tersebut.
Dengan menyalakan beberapa segmen yang sesuai, akan dapat diperagakan digit-digit dari 0 sampai 9, dan juga bentuk huruf A sampai F (dimodifikasi). Sinyal input dari switches tidak dapat langsung dikirimkan ke peraga 7 bagian, sehingga harus menggunakan decoder BCD (Binary Code Decimal) ke 7 segmen sebagai antar muka. Decoder tersebut terbentuk dari pintu-pintu akal yang masukannya berbetuk digit BCD dan keluarannya berupa saluran-saluran untuk mengemudikan tampilan 7 segmen.
Tabel Pengaktifan Seven Segment Display
Prinsip Kerja Load Cell
Sensor load cell membutuhkan sumber tegangan V (+) dan V (-) untuk bekerja. Sumber tegangan load cell sebesar 5 – 12 VDC.
Gambar 7. (a) Sensor Load Cell tanpa beban; (b) Skala Avo Meter Digital |
Pada Gambar 7, jika sensor load cell tidak diberi beban maka tegangan luaran (Vout) 0 V.
Gambar 8. (a) Sensor Load Cell diberi beban; (b) Skala Avo Meter Digital |
Pada Gambar 8, jika sensor load cell diberi beban maka tegangan luaran (Vout) akan bertambah.
h. Infrared Sensor
Sensor Infrared adalah komponen elektronika yang dapat mendeteksi benda ketika cahaya infra merah terhalangi oleh benda. Sensor infared terdiri dari led infrared sebagai pemancar sedangkan pada bagian penerima biasanya terdapat foto transistor, fotodioda, atau inframerah modul yang berfungsi untuk menerima sinar inframerah yang dikirimkan oleh pemancar.
Grafik respon:
Grafik menunjukkan hubungan antara resistansi dan jarak potensial untuk sensitivitas rentang antara pemancar dan penerima inframerah. Resistor yang digunakan pada sensor mempengaruhi intensitas cahaya inframerah keluar dari pemancar. Semakin tinggi resistansi yang digunakan, semakin pendek jarak IR Receiver yang mampu mendeteksi sinar IR yang dipancarkan dari IR Transmitter karena intensitas cahaya yang lebih rendah dari IR Transmitter. Sementara semakin rendah resistansi yang digunakan, semakin jauh jarak IR Receiver mampu mendeteksi sinar IR yang dipancarkan dari IR Transmitter karena intensitas cahaya yang lebih tinggi dari IR Transmitter.
i. Sensor PIR
Sensor PIR (Passive Infrared) mendeteksi radiasi inframerah yang dipancarkan oleh objek hangat, seperti manusia. Prinsip kerjanya adalah dengan menggunakan elemen piroelektrik yang sensitif terhadap perubahan radiasi inframerah. Ketika ada gerakan, perubahan radiasi ini menyebabkan perubahan tegangan yang diproses untuk mendeteksi gerakan. Sensor PIR sering digunakan dalam sistem keamanan dan otomatisasi rumah. Grafik respon sensor PIR terhadap jarak, arah dan kecepatan yaitu :
j. MotorBerdasarkan fungsinya, Sensor Sentuh dapat dibedakan menjadi dua jenis utama yaitu Sensor Kapasitif dan Sensor Resistif. Sensor Kapasitif atau Capacitive Sensor bekerja dengan mengukur kapasitansi sedangkan sensor Resistif bekerja dengan mengukur tekanan yang diberikan pada permukaannya.
Sensor Kapasitif
Sensor sentuh Kapasitif merupakan sensor sentuh yang sangat populer pada saat ini, hal ini dikarenakan Sensor Kapasitif lebih kuat, tahan lama dan mudah digunakan serta harga yang relatif lebih murah dari sensor resistif. Ponsel-ponsel pintar saat ini telah banyak yang menggunakan teknologi ini karena juga menghasilkan respon yang lebih akurat.
Berbeda dengan Sensor Resistif yang menggunakan tekanan tertentu untuk merasakan perubahan pada permukaan layar, Sensor Kapasitif memanfaatkan sifat konduktif alami pada tubuh manusia untuk mendeteksi perubahan layar sentuhnya. Layar sentuh sensor kapasitif ini terbuat dari bahan konduktif (biasanya Indium Tin Oxide atau disingkat dengan ITO) yang dilapisi oleh kaca tipis dan hanya bisa disentuh oleh jari manusia atau stylus khusus ataupun sarung khusus yang memiliki sifat konduktif.
Pada saat jari menyentuh layar, akan terjadi perubahaan medan listrik pada layar sentuh tersebut dan kemudian di respon oleh processor untuk membaca pergerakan jari tangan tersebut. Jadi perlu diperhatikan bahwa sentuhan kita tidak akan di respon oleh layar sensor kapasitif ini apabila kita menggunakan bahan-bahan non-konduktif sebagai perantara jari tangan dan layar sentuh tersebut.
Sensor Resistif
Tidak seperti sensor sentuh kapasitif, sensor sentuh resistif ini tidak tergantung pada sifat listrik yang terjadi pada konduktivitas pelat logam. Sensor Resistif bekerja dengan mengukur tekanan yang diberikan pada permukaannya. Karena tidak perlu mengukur perbedaan kapasitansi, sensor sentuh resistif ini dapat beroperasi pada bahan non-konduktif seperti pena, stylus atau jari di dalam sarung tangan.
Sensor sentuh resistif terdiri dari dua lapisan konduktif yang dipisahkan oleh jarak atau celah yang sangat kecil. Dua lapisan konduktif (lapisan atas dan lapisan bawah) ini pada dasarnya terbuat dari sebuah film. Film-film umumnya dilapisi oleh Indium Tin Oxide yang merupakan konduktor listrik yang baik dan juga transparan (bening).
Cara kerjanya hampir sama dengan sebuah sakelar, pada saat film lapisan atas mendapatkan tekanan tertentu baik dengan jari maupun stylus, maka film lapisan atas akan bersentuhan dengan film lapisan bawah sehingga menimbulkan aliran listrik pada titik koordinat tertentu layar tersebut dan memberikan signal ke prosesor untuk melakukan proses selanjutnya.
- Beroperasi hingga 2,7 V, ideal dalam sistem tenaga baterai dengan tegangan 3 V
- Didesain dengan daya rendah
- Akurasi ditingkatkan
- Waktu respon yang cepat
- Stabil, dengan penyimpangan yang rendah
- Tahan dengan zat kimia
- Suhu Operasi -40°C- 85°C (-40°F-185°F)
- Histerisis ±2 RH(Relative Humidity)
- Suplai Arus 5µA
- Output sinyal Tegangan Analog
- Waktu Respon 5s (1/e dalam udara yang bergerak lambat)
4. Percobaan[kembali]
a). Prosedur Kerja
- Untuk membuat rangkaian ini, pertama, siapkan semua alat dan bahan yang bersangkutan, di ambil dari library proteus
- Letakkan semua alat dan bahan sesuai dengan posisi dimana alat dan bahan terletak.
- Tepatkan posisi letak nya dengan gambar rangkaian
- Selanjutnya, hubungkan semua alat dan bahan menjadi suatu rangkaian yang utuh
- Lalu mencoba menjalankan rangkaian , jika tidak terjadi error, maka motor akan bergerak yang berarti rangkaian bekerja
b). Gambar Rangkaian
c). Prinsip Kerja
1. Rangkaian Sensor Infrared
Rangkaian ini berfungsi untuk mendeteksi adanya buah tomat yang diarahkan menuju keranjang. Saat terdeteksi buah tomat oleh sistem, maka sensor infrared akan mengalirkan output tegangan 5 v menuju kaki base, lalu ke kaki emittor dan menuju ground. Tegangan base emittor bernilai +1.2 v, sehingga supply 12 v akan mengalir menuju relay dan resistor, menuju ke kaki collector, kaki emittor dan berakhir di ground. Dengan adanya tegangan yang mengalir melewati relay, maka switch pada rangkaian disebelahnya akan bergeser ke kiri sehingga rangkaian menjadi tertutup. Oleh karenanya, arus dari baterai 12v akan mengalir melewati motor yang berfungsi untuk menjalankan tomat masuk ke dalam keranjang.
2. Rangkaian Sensor PIR
Rangkaian ini berfungsi untuk menghitung keranjang mana saja yang terisi buah dan mana yang kosong. Saat buah diarahkan dan masuk ke keranjang, maka sistem dengan sensor pir akan mendeteksi adanya gerakan. Akibatnya, output sensor dengan nilai 5v akan mengalir memasuki ic 74192 yang berfungsi sebagai counter. Pada IC 74192 counter up asynchronus, kaki D0-D1 hubungkan dengan ground dan kaki up dihubungkan dengan tegangan output sensor. Nantinya, kaki output yaitu q1-q3 akan disambungkan ke ic 7448 yang berfungsi sebagai decoder pada input kaki A-D untuk menampilkan angka pada seven segment. Selama keranjang terisi tomat, maka seven segment akan bernilai 1.
3. Rangkaian Sensor Loadcell
4. Rangkaian Sensor Touch dan Infrared
5. Rangkaian Sensor Kelembaban
d). Video[kembali]
5. Download File[kembali]
- Download Rangkaian [klik disini]
- Download Datasheet Resistor [Klik Disini]
- Download Datasheet Transistor [Klik Disini]
- Download Datasheet 7482 [Klik Disini]
- Download Datasheet 74192 [Klik Disini]
- Download Datasheet 7448 [klik Disini]
- Download Library Infared Sensor [Klik Disini]
- Download Library Touch Sensor [Klik Disini]
- Download Library Sensor Loadcell [klik disini]
- Download Library Sensor PIR [klik disini]
- Download Library Humidity Sensor [klik disini]
- Data Sheet HIH 5030 [klik disini]
- Data Sheet LDR [klik disini]
- Data Sheet LoadCell [klik disini]
- Data Sheet LM35 [klik disini]
- Data Sheet Motor [klik disini]
- Data Sheet resistor [klik disini]
- Data Sheet Op Amp [klik disini]
- Data Sheet LED [klik disini]
- Data Sheet Baterai [klik disini]
- Data Sheet NPN [klik disini]
- Data Sheet Relay [klik disini]
- Data Sheet Diode [klik disini]
- Data Sheet Potensiometer [klik disini]
- Data Sheet Voltmeter [klik disini]
Komentar
Posting Komentar