APLIKASI DETEKTOR NON INVERTING VREF = 0
1. Tujuan [kembali]
- Untuk Mengetahui Rangkaian OP-AMP
sebagai detektor non inverting
- Untuk Mengetahui Prinsip kerja
OP-AMP sebagai detektor non inverting
2. Alat dan Bahan [kembali]
ALAT
Instrumen
a. DC Voltmeter
B. osiloskop
GAMBAR 6. OSILOSKOP
Osiloskop adalah alat ukur elektronika yang berfungsi memproyeksikan bentuk sinyal listrik. Osiloskop dilengkapi dengan tabung sinar katode. Peranti pemancar elektron memproyeksikan sorotan elektron ke layar tabung sinar katode.
Generator
a. Power Supply
b. Baterai
- Input voltage: ac 100~240v / dc 10~30v
- Output voltage: dc 1~35v
- Max. Input current: dc 14a
- Charging current: 0.1~10a
- Discharging current: 0.1~1.0a
- Balance current: 1.5a/cell max
- Max. Discharging power: 15w
- Max. Charging power: ac 100w / dc 250w
- Jenis batre yg didukung: life, lilon, lipo 1~6s, lihv 1-6s, pb 1-12s, nimh, cd 1-16s
- Ukuran: 126x115x49mm
- Berat: 460gr
·
RESISTOR
GAMBAR 1. RESISTOR
Resistor merupakan salah satu komponen elektronika pasif yang berfungsi untuk membatasi arus yang mengalir pada suatu rangkaian dan berfungsi sebagai terminal antara dua komponen elektronika.Tegangan pada suatu resistor sebanding dengan arus yang melewatinya (V=IR).
·
OP-AMP
GAMBAR 4. OP-AMP
Penguat operasional atau
yang biasa disebut OP-AMP merupakan suatu jenis penguat elektronika dengan
sambatan(coupling) arus searah yang memiliki faktor penguatan(gain)
sangat besar dengan dua masukan dan satu keluaran.
· GROUND
GAMBAR 5. GROUND
Ground adalah titik kembalinya arus searah atau titik kembalinya sinyal bolak balik atau titik patokan dari berbagai titik tegangan dan sinyal listrik dalam rangkaian elektronika.
KOMPONEN INPUT :
a. Sensor Vibration
b. Sensor Sound
KOMPONEN OUTPUT :
a. LED
Tegangan LED menurut warna yang dihasilkan:
- Infra merah : 1,6 V.
- Merah : 1,8 V – 2,1 V.
- Oranye : 2,2 V.
- Kuning : 2,4 V.
- Hijau : 2,6 V.
- Biru : 3,0 V – 3,5 V.
- Putih : 3,0 – 3,6 V.
- Ultraviolet : 3,5 V.
b. Relay
3. Dasar Teori [kembali]
A. OP AMP
Penguat operasional (Operational Amplifier) atau yang biasa disebut dengan Op-Amp, merupakan penguat elektronika yang banyak digunakan untuk membuat rangkaian detektor, komparator, penguataudio, video, pembangkit sinyal, multivibrator, filter, ADC, DAC, rangkaian penggerak dan berbagai macam rangkaian analoglainnya.
Op-amp pada umumnya tersedia dalam bentuk rangkaian terpadu yang memiliki karakteristik mendekati karakteristik penguat operasional ideal tanpa perlu memperhatikan apa yang terdapat di dalamnya. Ada tiga karakteristik utama op-amp ideal, yaitu:
1. Gain tak berhingga.
2. Impedansi input tak berhingga.
3. Impedansi output bernilai 0.
Namun, dalam praktiknya Op-Amp
memiliki Gain dan Impedansi input yang sangat besar namun bukan tak berhingga
sehingga Impedansi output akan sangat kecil hingga mendekati nilai 0.
Gambar 7. Simbol Op-Amp
Dapat dilihat bahwa Op-Amp secara umum memiliki 4 pin, yaitu masukan inverting dengan tanda (-), masukan non-inverting dengan tanda (+), masukan tegangan positif dan tegangan negatif dan pin keluaran atau output. Dalam Op-Amp, terdapat dua perbudaan bagi tegangan yang diinputkan ke dalamnya. tegangan dapat dimasukan pada masukan inverting dan juga dapat dimasukkan pada msukan non-inverting. Pada masukan Inverting tegangan input akan menghasilkan output dengan beda fasa 180 derjat atau dapat dikatakan gelombang uotput akan terbalik dari gelombang input.
Detektor non inverting
a. Dengan Vref = 0 Volt
Rangkaian detektor non inverting
Dengan menggunakan persamaan (1) maka Vi
= V1 dan Vref = V2 sehingga bentuk gelombang tegangan output Vo (V0 max =
+/- Vsat = AoL (V1-V2) )
maka:
Bentuk gelombang input dan gelombang output
Adapun kurva karakteristik Input-Ouput (I-O) adalah seperti gambar 77. Dengan Vi > 0 maka Vo = +Vsat dan sebaliknya bila Vi < 0 maka Vo = -Vsat.
KURVA Karakteristik I-O
B. RESISTOR
GAMBAR . RESISTOR
Resistor merupakan salah satu komponen elektronika pasif yang berfungsi untuk membatasi arus yang mengalir pada suatu rangkaian dan berfungsi sebagai terminal antara dua komponen elektronika.Tegangan pada suatu resistor sebanding dengan arus yang melewatinya (V=IR).Cara menghitung nilai resistor dapat dilihat pada gambar2 dan gambar 3.
GAMBAR 2. WARNA GELANG RESISTOR
GAMBAR 3. CARA PENGHITUNGAN BESAR RESISTANSI RESISTOR
LANGKAH-LANGKAH :
· MASUKKAN ANGKA LANGSUNG DARI KODE WARNA GELANG KE-1 (PERTAMA)
· MASUKKAN ANGKA LANGSUNG DARI KODE WARNA GELANG KE-2
· MASUKKAN JUMLAH NOL DARI KODE WARNA GELANG KE-3 ATAU PANGKATKAN ANGKA TERSEBUT DENGAN 10 (10N)
· MERUPAKAN TOLERANSI DARI NILAI RESISTOR TERSEBUT
CONTOH :
GELANG KE 1 : COKLAT = 1
GELANG KE 2 : HITAM = 0
GELANG KE 3 : HIJAU = 5 NOL DIBELAKANG ANGKA GELANG KE-2; ATAU KALIKAN 105
GELANG KE 4 : PERAK = TOLERANSI 10%
· MAKA NILAI RESISTOR TERSEBUT ADALAH 10 * 105 = 1.000.000 OHM ATAU 1 MOHM DENGAN TOLERANSI 10%.
C. Sensor Vibration
- Pembesaran sinyal getaran
- Penyaringan sinyal getaran dari sinyal pengganggu.
- Penguraian sinyal, dan lainnya.
Sensor getaran dipilih sesuai dengan jenis sinyal getaran yang akan dipantau. Karena itu, sensor getaran dapat dibedakan menjadi:
- Sensor penyimpangan getaran (displacement transducer)
- Sensor kecepatan getaran (velocity tranducer)
- Sensor percepatam getaran (accelerometer).
Pemilihan sensor getaran untuk keperluan pemantauan sinyal getaran didasarkan atas pertimbangan berikut:
- Jenis sinyal getaran
- Rentang frekuensi pengukuran
- Ukuran dan berat objek getaran.
- Sensitivitas sensor
Berdasarkan cara kerjanya sensor dapat dibedakan menjadi:
- Sensor aktif, yakni sensor yang langsung menghasilkan tegangan listrik tanpa perlu catu daya
(power supply) dari luar, misalnya Velocity Transducer.
- Sensor pasif yakni sensor yang memerlukan catu daya dari luar agar dapat berkerja.
Spesifikasi :
-Vsuplai : DC 3.3V-5V
-Arus : 15mA
-Sensor : SW-420 Normally Closed
-Output : digital
-Dimensi : 3,8 cm x 1,3 cm x 0,7 cm
-Berat : 10 g
Grafik perbandingan frekuensi dengan sensitivitas sensor getaran :
C. Sound Sensor
Sensor suara adalah sebuah alat yang mampu mengubah gelombang Sinusioda suara menjadi gelombang sinus energi listrik (Alternating Sinusioda Electric Current). Sensor suara berkerja berdasarkan besar/kecilnya kekuatan gelombang suara yang mengenai membran sensor yang menyebabkan bergeraknya membran sensor yang juga terdapat sebuah kumparan kecil di balik membran tadi naik & turun. Oleh karena kumparan tersebut sebenarnya adalah ibarat sebuah pisau berlubang-lubang, maka pada saat ia bergerak naik-turun, ia juga telah membuat gelombng magnet yang mengalir melewatinya terpotong-potong. Kecepatan gerak kumparan menentukan kuat-lemahnya gelombang listrik yang dihasilkannya.Sensor suara adalah sensor yang cara kerjanya merubah besaran suara menjadi besaran listrik, dan dipasaran sudah begitu luas penggunaannya. Komponen yang termasuk dalam Sensor suara yaitu electric condenser microphone atau mic kondenser.Intensitas suara adalah ukuran dari "aliran energi melewati satuan luas per satuan waktu" dan unit pengukuran adalah W/m2 Probe intensitas suara mikrofon ini dirancang untuk menangkap intensitas suara bersama dengan unit arah aliran sebagai besaran vektor. Hal ini dicapai dengan menggabungkan lebih dari satu mikrofon di probe untuk mengukur aliran energi suara. mikrofon konvensional dapat mengukur tekanan suara (unit: Pa), yang mewakili intensitas bunyi di tempat tertentu (satu titik), tetapi dapat mengukur arah aliran. Mikrofon intensitas bunyi Oleh karena itu digunakan untuk sumber suara memeriksa dan untuk mengukur kekuatan suara.
Prinsip kerja : Sensor suara adalah sensor yang cara kerjanya yaitu merubah besaran suara menjadi besaran listrik. Sinyal yang masuk akan di olah sehingga akan menghasilkan satu kondisi yaitu kondisi 1 atau 0. Sensor suara banyak digunakan dalam kehidupan sehari-hari, Contoh Pengaplikasian sensor ini adalah yang bekerja pada system robot. Suara yang diterima oleh microfon akan di transfer ke pre amp mic, fungsi pre amp mic ini adalah untuk memperkuat sinyal suara yang masuk kedalam komponen.
D. Sensor Ultraviolet
Sensor yang mendeteksi adanya cahaya terang dan gelap.
4. Percobaan [kembali]
a. prosedur percobaan
- Untuk membuat rangkaian ini, pertama, siapkan semua alat dan bahan yang bersangkutan, di ambil dari library proteus
- Letakkan semua alat dan bahan sesuai dengan posisi dimana alat dan bahan terletak.
- Tepatkan posisi letak nya dengan gambar rangkaian
- Selanjutnya, hubungkan semua alat dan bahan menjadi suatu rangkaian yang utuh
- Lalu mencoba menjalankan rangkaian , jika tidak terjadi error, maka LED atau buzzer akan hidup yang berarti rangkaian bekerja
b. Gambar rangkaian
- Rangkaian 1 ( Vibration Sensor ) : Saat terjadi gempa bumi sensor akan mendeteksi adanya getaran, kemudian sensor akan mengeluarkan output dan masuk keresistor dan mengeluarkan output sebesar 5V, lalu arus ini akan masuk ke op amp pada rangkaian detektor non inverting dengan Vref= 0 kemudian op amp ini mengeluarkan output yang masuk ke resistor dan outputnya menjadi tegangan FBE yang masuk ke kaki base ke kaki emitor lalu menuju ground. Power yang digunakan akan menghasilkan arus yang masuk ke melewati relay menuju kaki kolektor lalu ke emitor menuju ground, karena adanya arus yang melewati relay tadi maka relay akan switch dan menjadi rangkaian tertutup. Setelah menjadi rangkaian tertutup arus pada batrai akan masuk ke buzzer, dan arus yang melewati led kemudian masuk ke kaki buzzer. Arus yang telah melewati buzzer akan menghidupkan buzzer dengan syarat harus lebih dari 3V.
- Rangkaian 2 ( Sensor UV ) :Sensor ini bekerja dengan cara menangkap sinar uv yang ada pada pagi hingga sore hari, sensor akan mengeluarkan output sebesar 14,3V kemudian arus ini akan masuk ke kaki non inverting pada rangkaian detektor non inverting dengan Vref=0 dan mengeluarkan output sebesar 14V, arus akan melewati resistor yang dimana akan menjadi tegangan FBE sebesar 0,88 V yang sudah cukup mengaktifkan transistor. tegangan tadi akan bergerak menuju kaki base ke emitor lalu ke ground. Power yang dipakai pada relay sebesar 15V dan akan melewatinya ke transistor sebagai self bias lalu ke kaki kolektor menuju emitor dan akhirnya ke ground, karena arus yang melewati relay tidak cukup untuk menggerakkan relay, maka relay tidak akan bergerak sehingga tidak menjadi rangkaian tertutup dan LED tidak aktif. Pada saat malam hari tidak akan ada sinar uv yang bekerja jadi sensor akan mengeluarkan output sebesar -0,01V dan menuju kaki non inverting dan mengluarkan output sebesar -13,5V dan menuju resistor dan outputnya menjadi tegangan FBE lalu menuju kaki base pada transistor ke emitor lalu ke ground. Power akan mengalirkan arus melewati relay ke stransistor sebagai fixed bias masuk ke kaki kolektor menuju emitor lalu ke ground, karena arus melewati relay tadimakan relay akan switch dan membentuk rangkaian tertutup. Arus pada rangkaian tertutup berasal dari batrai sebesar 12V masuk ke resistor dan lalu ke LED sehingga LED akan aktif.
- Rangkaian 3 ( Sound Sensor ) : Sensor ini diletakkan di dalam rumah dan Lamps sebagai penerang lampu bisa di letakkan dimana saja. Ketika sensor ini mendeteksi adanya sebuah suara maka mengeluarkan output sebesar 5V yang masuk ke kaki non inverting detektor non inverting dengan Vref=0 lalu outputnya akan disaturasikan menjadi 9,01V lalu masuk ke resistor dan keluar sebagai tegangan FBE sebesar 0,86V dan arus tersebut menuju kaki base ke emitor lalu ke ground. Power akan mengalirkan arus melewati relay ke stransistor sebagai self bias masuk ke kaki kolektor menuju emitor lalu ke ground, karena arus melewati relay tadi maka relay akan switch dan membentuk rangkaian tertutup. Arus pada rangkaian tertutup berasal dari batrai sebesar 12V masuk ke resistor dan lalu ke Lamps sehingga lampu akan aktif.
d. Video
1. Aplikasi penyalaan lampu dengan sensor uv
Komentar
Posting Komentar